Homework 8

Subspaces.

A subspace S of a vector space V is a set of vectors belonging to V that
i) contains the zero vector
ii) is closed

When we require it to be closed, we obviously mean with respect to vector space operations, i.e. multiplication by a scalar and vector addition. Strictly speaking we do not need to state that it contains the zero vector, as we could deduce it from the closedness. But checking that a set of vectors contains the origin is the first thing to do if asked whether a given set S is a subspace, and we like to remind it at the beginning of the definition.

Exercise 1. Subspaces of \mathbb{R}^{3}

Describe all the possible subspaces of \mathbb{R}^{3}, maybe ordering them from the smallest to the biggest ones, thus starting with the trivial subspace, $S=\{0\}$, which only contains the null vector and is of size $\operatorname{dim} S=0$.

Exercise 2. Creating new Subspaces with Set Operations.

A way to create new subspaces, if you already have some subspaces that you know of, is combining them somehow. If you answer yes to the following questions, sketch a proof, else find a counter example:
i) Is the intersection of two subspaces always a subspace?
ii) Is the union of two subspaces always a subspace?

Exercise 3. Boottom-Up and Top-Down.

Broadly speaking, there is two ways to build subspaces out of vectors.

- Bottom-up starting with a few vectors and keeping on adding linear combinations untill you have filled a whole subspace.
- Top-down that is starting with the whole space and ruling out sets of vectors using constraints, leaving a smaller space which is closed.

Here are four subspaces of \mathbb{R}^{3}, built with either one of these methods. Sketch them, and rebuild them using the other method. As usual, e_{1}, e_{2} and e_{3} are the componants of the canonical basis, that is the colums of the identity matrix I_{3}, and $\operatorname{Vec}(\{u, v\})$ is the vector space spanned by the set of vectors containing u and v.

$$
\begin{gathered}
P_{1}=V e c\left(\left\{e_{1}, e_{2}\right\}\right), \quad L_{2}=\operatorname{Vec}\left(\left\{e_{1}+e_{2}\right\}\right), \\
S_{3}=\left\{x \in \mathbb{R}^{3}, x^{T} e_{1}=0\right\}, \\
S_{4}=\left\{x \in \mathbb{R}^{3}, A x=0\right\} \quad \text { with } \quad A=\left[\begin{array}{ccc}
1 & -1 & 1 \\
-1 & 1 & 0
\end{array}\right]
\end{gathered}
$$

