Homework 10

Least Squares.

The meaning of linear.

Least squares approximation is also called Linear Regression. The meaning of linear here is not that the modeling fuction, say $f(x)$, must be linear, or rather affine (linear + shift), but that the solution is a linear combination of the modeling basis functions:

$$
f(x)=\beta_{0} f_{0}(x)+\beta_{1} f_{1}(x)+\cdots+\beta_{n} f_{n}(x)
$$

Exercise 1. Fitting with a Parabola.

Here is a set of data points $\left(x_{i}, y_{i}\right)$ that we want to model with a parabola.

$$
S=\{(1,2),(2,4),(3,8)\}
$$

This is a one dimensional model, there is no shift. The parabola will go through the origin and the modeling function will be a one dimensional "linear combination" of the shape:

$$
f(x)=\beta_{0} x^{2}
$$

Which one is the best fitting parabola? Which one minimizes $\varepsilon_{1}^{2}+\varepsilon_{2}^{2}+\varepsilon_{3}^{2}=$ $\mid \varepsilon \|^{2} ?$

We sample the model function, x^{2}, above the independent variable x which gives us the unique column of the design matrix $X=(1,4,9)^{T}$. So we are now solving $X \beta_{0}+\varepsilon=y$ in order to minimize the square of the norm of ε.

$$
\left[\begin{array}{l}
1 \\
4 \\
9
\end{array}\right] \beta_{0}+\left[\begin{array}{l}
\varepsilon_{1} \\
\varepsilon_{2} \\
\varepsilon_{3}
\end{array}\right]=\left[\begin{array}{l}
2 \\
4 \\
8
\end{array}\right]
$$

To find the best β_{0} we take the orthogonal projection of y on the column space of X.
i) Recall the formula giving the orthogonal projection matrix P_{X}.
ii) From $X \hat{\beta}=P_{X} y$, find the optimal parameter $\hat{\beta}_{0}$ minimizing $\|\varepsilon\|^{2}$.

Exercise 2. Fitting with a straight Line.

Here is the classical exemple of least squares approximation where the regression is linear, we have a linear combination of the basis functions $f_{0}(x)=1$ and $f_{1}(x)=x$ and the model is affine, a straight line through the cloud of data points, with a shift at the origin.

$$
f(x)=\beta_{0}+\beta_{1} x
$$

Let us take the data points from Exercise 1., $S=\{(1,2),(2,4),(3,8)\}$.
i) Compute the orthogonal projection matrix P_{X} either by hand or with Matlab/Julia/R (or even better first by hand, then checking with a computer).

You can use the following formula to invert a 2×2 matrix by hand.

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

ii) Compute $\hat{\beta}=\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)^{T}$.

